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Abstract 32 

Many present-day statistical schemes for postprocessing weather forecasts, in particular 33 

precipitation forecasts, rely on calibration using prescribed statistical models to relate forecast 34 

statistics to distributional parameters. The efficacy of such schemes is often constrained not only 35 

by prescribed predictor-predictand relation, but also by arbitrary choices of temporal window 36 

and lead time range for training. To address this limitation, we propose an end-to-end, 37 

computationally efficient hybrid postprocessing scheme capable of producing full predictive 38 

distributions of precipitation accumulation without explicit stratification of forecast-observation 39 

pairs by forecast lead time and season. The proposed framework uses the censored, shifted 40 

gamma distribution (CSGD) as the predictive distribution but uses an artificial neural network 41 

(ANN) to estimate the distributional parameters of CSGD through a unified approach. This 42 

approach, referred to as ANN-CSGD, allows for simultaneous estimation of distributional 43 

parameters over multiple lead times and seasons in a single model by incorporating the latter 44 

variables as predictors to the ANN. We test our proposed ANN-CSGD model for postprocessing 45 

of ensemble mean forecasts of 24-h precipitation totals over selected river basins in California, at 46 

one- to seven-day lead times, from the Global Ensemble Forecast System (GEFS). The 47 

probabilistic quantitative precipitation forecasts (PQPFs) from the ANN-CSGD, are more skillful 48 

overall than those from the benchmark CSGD and the Mixed-type meta-Gaussian distribution 49 

(MMGD) models. The ANN-CSGD PQPFs highly improve the performance of those from 50 

CSGD in predicting the probability of precipitation (PoP) and are also much sharper and reliable 51 

at higher precipitation thresholds. We demonstrate how the hybrid approach, by using the entire 52 

available training data and its modified formulation, efficiently represents interactions between 53 

GEFS forecasts and season/lead times, thus leading to enhanced predictive performance. 54 
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1. Introduction 57 

Statistical postprocessing techniques are increasingly used to improve the reliability and skill of 58 

real time probabilistic quantitative precipitation forecasts (PQPFs) produced by numerical 59 

weather prediction (NWP) models. Broadly speaking, these techniques can be categorized as 60 

nonparametric and parametric ones. A prominent example of the former is the Analog approach 61 

(Hamill and Whitaker 2006; Hamill et al. 2015). The parametric techniques rely on prescribed 62 

parametric forms of conditional (predictive), joint and marginal distributions, and employ 63 

various techniques ranging from regression to the method of moments, and their variants, for 64 

estimating distributional parameters. Many of the modern parametric approaches fall under the 65 

broad umbrella of Ensemble Model Output Statistics (EMOS; Gneiting et al. 2005), also known 66 

as nonhomogeneous regression. As the name implies, the EMOS approaches use prescribed 67 

predictive distributions and relate distributional parameters to ensemble statistics through a set of 68 

regression equations (Scheuerer and Hamill 2015; Zhang et al. 2017; Stauffer et al. 2017).   69 

The extent to which postprocessing techniques have improved forecast skill has varied in 70 

practice (Li et al. 2017; Wilks 2018; Vannitsem et al. 2020). There are several common 71 

limitations in postprocessing methods adopted to date. Among the frequently cited are the 72 

inflexible and subjective way of selecting predictors, structural rigidity that makes it difficult to 73 

integrate ancillary predictors, and the ad hoc way of determining spatial-temporal training 74 

domains (see related discussions in Rasp and Lerch 2018). The advent of machine learning 75 

techniques offers many new opportunities to address these limitations. Relative to the parametric 76 

approaches, EMOS techniques included, some of the recent machine learning techniques offer 77 
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flexibility in identifying predictors, in integrating ancillary information, and in capturing 78 

complex, nonlinear predictor-predictand relationships that are difficult to characterize 79 

parametrically (see, e.g., Taillardat et al. 2019). Particularly promising are the various artificial 80 

neural networks (ANNs) which have been known for their ability to model nonlinear 81 

dependencies. Recent years have seen an explosion of ANN-based prediction paradigms (Liu et 82 

al. 2016; Brenowitz and Bretherton 2018; Gentine et al. 2018; Rasp et al. 2018; Chapman et al. 83 

2019; Cloud et al. 2019; Gagne et al. 2019; Lagerquist et al. 2019). Yet, the use of these 84 

techniques in the context of postprocessing remains relatively limited. Rasp and Lerch (2018) is 85 

perhaps the first attempt of this nature. The authors explored a hybrid scheme that retains a 86 

parametric form of the predictive distribution of 2-m temperature but relies on ANNs to estimate 87 

the distribution parameters from the ensemble statistics of 2-m temperature as well as ancillary 88 

variables. Scheuerer et al. (2020), in a similar vein, developed an ANN-based scheme for 89 

producing 7-day accumulated PQPFs at subseasonal range (2‒4 weeks) from NWP ensemble 90 

forecasts, and showed that the PQPFs thus generated broadly outperforms climatology. Other 91 

studies of note include Bremnes (2020) where ANN was used for postprocessing wind speed 92 

forecasts. Collectively, these studies indicate that embedding local information and incorporating 93 

ancillary forecast variables can lead to larger improvements in forecast skills. They further 94 

suggest that ANN models, contrary to the common perception of being black boxes, can help 95 

uncover, and offer physical insights to the meteorological processes that underpin the links 96 

between predictors and predictands.   97 

Inspired by the successes of recent ANN-based postprocessing approaches, and motivated by the 98 

broader need for improving the skill of PQPF while circumventing limitations inherent in 99 

existing EMOS schemes, we propose a hybrid ANN-nonhomogeneous regression-based scheme 100 
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capable of postprocessing precipitation forecasts at multiple lead times and seasons in a unified 101 

way. The proposed scheme retains the parametric form of the predictive distribution of 102 

precipitation proposed by Scheuerer and Hamill (2015) and Baran and Nemoda (2016), but 103 

departs from the conventional EMOS by using ANNs to relate NWP forecasts to the 104 

distributional parameters. The potential advantages of the proposed scheme, which we will 105 

henceforth refer to as ANN-CSGD are three-fold. First, this scheme does not require an explicit 106 

prescription of predictor-predictand relationships as is currently done in EMOS models - it can 107 

discover and integrate arbitrary nonlinear relationships through training.  Second, the training of 108 

the model can be done using the entire data archive and thereby obviate the need for explicit 109 

treatment of lead time-based and seasonally varying NWP forecast errors. Third, it can account 110 

for seasonal variations in the interaction between NWP forecasts and temporal predictors.  111 

In this paper we describe and evaluate the proposed scheme which relies only on the ensemble 112 

mean of NWP forecasts as the major predictor.  The evaluation is conducted for sub-basins 113 

within three selected river basins in California. The proposed scheme is applied to postprocess 114 

Global Ensemble Forecast System (GEFS; Hamill et al. 2013) precipitation reforecasts along 115 

with two benchmark schemes. The first is the single predictor version of the censored, shifted 116 

gamma distribution (CSGD; Scheuerer and Hamill 2015). The second is the Mixed-type Mata-117 

Gaussian Distribution (MMGD; Wu et al. 2011), which has been the standard method in the U.S. 118 

National Weather Service (NWS) Hydrologic Ensemble Forecast Service (HEFS; Demargne et 119 

al. 2014). Our overarching hypothesis is that the flexibility accorded by the ANN-based model in 120 

establishing complex predictor-distributional parameter relationships, in determining temporal 121 

training windows, and in lumping forecasts for different lead times, will help the proposed 122 

scheme attain superior predictive performance relative to the benchmarks. 123 
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The reminder of this paper is organized as follows. Section 2 describes the proposed ANN-124 

CSGD scheme as well as the benchmark methods, data, and experimental setup.  Section 3 125 

presents the outcomes of the experiments and section 4 summarizes the findings and discusses 126 

future possible extensions. 127 

2. Materials and methods 128 

2.1. Proposed model 129 

The censored, shifted gamma distribution (CSGD) introduced by Scheuerer and Hamill (2015), 130 

has been a popular choice to represent the right skewed, mixed-type dichotomous-continuous 131 

nature of the predictive distribution of precipitation (Scheuerer and Hamill 2015; Baran and 132 

Nemoda 2016; Zhang et al. 2017; Scheuerer et al. 2020). Let ��,� denote the cumulative 133 

distribution function (CDF) of the gamma distribution with shape parameter � > 0 and scale 134 

parameter � > 0. The CDF at realized precipitation value 	, and quantile functions of CSGD for 135 

any 0 ≤ � < 1 are defined by (Scheuerer and Hamill 2015; Baran and Nemoda 2016): 136 

���,�,��	� = ���,��	 − ��,         	 ≥ 0 0,                           	 < 0   (1) 

��= ����0, � + ��,��  ��� ! (2) 

where the additional parameter, � < 0 shifts the gamma distribution to the negative values. To 137 

form the CSGD, the shifted gamma distribution is left censored at zero by assigning the mass 138 

probability ��,��−�� to the origin to account for non-negativity of precipitation amounts.  To 139 

relate the mean " = ��, standard deviation # = √��, and shift parameter � of predictive CSGDs 140 

to the predictors, we propose a fully connected (dense) feed forward neural network where each 141 

node receives a linear combination of weighted outputs from nodes in the previous layer, adjusts 142 
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it by adding a bias quantity, and applies an activation function to the result.  Our proposed ANN-143 

CSGD structure (Fig. 1) consists of the following elements:  144 

• Input layer, where covariates are introduced to the network.  145 

• One hidden layer; we use the exponential linear unit (ELU) with % = 1 as the activation 146 

function to introduce nonlinearity to the network 147 

&��� = � �,                            � > 0           %'exp��� − 1+,         � ≤ 0                  (3) 

ELUs are known to provide more precise and faster learning compared to the other 148 

activation functions in deep learning experiments (see, Clevert et al. 2015). 149 

• Layer normalization (Ba et al. 2016) which normalizes each sample output from hidden 150 

nodes to maintain the mean and standard deviation of node outputs within each example 151 

close to 0 and 1, respectively. Recent studies (see, e.g., Xu et al. 2019) show that Layer 152 

normalization helps stabilize the training process by enabling smoother gradients and 153 

yields faster training convergence.  154 

• Output layer with a linear activation function. We set three CSGD parameters as 155 

functions of the network outputs ,- to constrain the values of these parameters to 156 

reasonable ranges (i.e., ", # > 0 and � < 0). Therefore, we set δ = −2�34�, 5�, " =157 

exp�,5�, and # = exp�,6�. These additional functions can be interpreted as inverse link 158 

functions used in conventional distributional regression or generalized additive models 159 

for location, scale, and shape (GAMLSS; Rigby and Stasinopoulos 2005) (see, also, 160 

Cannon 2012; Rasp and Lerch 2018). 161 

We incorporate the ensemble mean forecast, forecast lead time (1 to 7 days), and month of the 162 

year of the verifying observations (1 to 12) as predictors to the ANN. Using the latter two 163 

predictors enables us to train a single model to postprocess forecasts from multiple lead times 164 
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and months. Lead time values are normalized by dividing each quantity by the maximum value 165 

(8. 9. , :�	 7⁄ ). To account for seasonal cycle, we use the cosine term 166 

'=>2�2@��>A4ℎ − 1� 12⁄ �+ to both introduce the cyclical nature of the month of the year to the 167 

network and to enforce the network to encode the annual cycle of precipitation over the study 168 

area (see, Liu et al. 2018; Scheuerer et al. 2017). 169 

We retain the average value of continuous ranked probability score (CRPS) of predictive CSGDs 170 

as the loss function for training the weights and biases of the ANN-CSGD. The ANN is trained 171 

by minimizing the CRPS computed using collocated and coincidental forecast-observation pairs 172 

over training data (see the appendix B for the mathematical definition of CRPS) 173 

CRPS = 1G H crpsL��M�M�M , 	-N
O

-P 
 

(4) 

The analytical expression of CRPS for a paired CSGD predictive distribution and verifying 174 

observation was proposed by Scheuerer and Hamill (2015).  Similarly, we implement  175 

crps L��M�M�M , 	-N = �	- − �-��2��M,�M�	- − �-� − 1! − �M�MQ R S 
5 , �- +  

5T �1 −
                                     �5�M,�M�−2�-�! + �-�-�1 + 2��M,�M�−����MU ,�M�−�-� −
                                     ��M,�M�−�-�5 − 2��MU ,�M�	- − �-�! + ���,��−��5  

(5) 

 

where R�0,0� is the beta function, and ��- , �-, �-� are three parameters of ith predictive CSGD 176 

with 	- being the corresponding verifying observation. To minimize the loss function, we use the 177 

Adam stochastic gradient descent-based optimization algorithm (Kingma and Ba 2014) and 178 

update model parameters based on small batches randomly sampled from the training dataset. 179 

One major challenge in applying ANNs is to constrain the complexity of the model while 180 

attaining optimal predictions. Overfitting can occur if a very complex structure is used. Several 181 

regularization techniques to reduce generalization errors in ANNs are available as reviewed by 182 
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Goodfellow et al. (2016). Among them, we use early stopping, which is one of the most popular 183 

and widely used regularization techniques in ANNs. 184 

In our work, we leave 20% of the available training data as the validation set and do not include 185 

them in training process. This practice enables us to reduce overfitting by monitoring the average 186 

loss value over the validation set while we train the model, and return the best possible training 187 

parameters (weights and biases) at the time when the lowest CRPS for the validation set is 188 

achieved. We terminate training when no further decrease in validation set loss is seen after 15 189 

iterations through all training batches or the entire training data (epochs), with up to 1000 190 

epochs.  191 

We train ANNs using the previously described process, with all possible combinations of 192 

different settings, using the early stopping technique for the following hyperparameters 193 

• Number of nodes in the hidden layer: ]5,10,15_  194 

• Batch size: ]2048, 4096, 8192_ 195 

• Learning rate of the Adam optimization algorithm: ]0.01,0.005_  196 

All networks are trained with the same random number generator (seed) and are evaluated 197 

based on the average loss value in the validation set. The ANN configuration with the lowest 198 

validation loss is chosen for out-of-sample predictions. Individual tested ANNs have ,]7A + 3_ 199 

trainable parameters where A refers to the number of nodes in the hidden layer. We used a simple 200 

(non-trained) layer as the normalization layer. Our assessments showed that training Layer 201 

normalization parameters (beta and gamma) does not yield significant improvement over the 202 

non-trained one and possibly increases the risk of overfitting due to the increased number of 203 

overall network parameters. 204 

 205 
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  206 

2.2. Benchmark models 207 

2.2.1. CSGD 208 

To generate postprocessed precipitation forecasts at a given location, for each forecast lead 209 

time and month of the year, Scheuerer and Hamill (2015), first fit three climatological CSGD 210 

parameters ( "ef, #efand �ef) to locally observed training precipitation data using a 91-day 211 

temporal window centered around the 15th of each month. In the second step these parameters 212 

are included in nonlinear, nonhomogeneous regression equations to relate monthly parameters of 213 

predictive CSGDs to statistics of spatially smoothed ensemble of forecasts.   214 

In this study, we use the regression equations that incorporate only the ensemble mean: 215 

" = "ef � ⁄ g>hi1 + ��exp�� � − 1�L�5 + �6 & &efj N!k 
 

(6) 

# = �l#efm" "ef⁄  (7) 

� = �ef (8) 

where & and &ef  correspond to the raw ensemble mean forecasts and their climatological mean 216 

in training data, respectively. In the version of CSGD described in Scheuerer and Hamill (2015), 217 

the predictive shift parameter � is kept identical to the climatological shift to ensure that the 218 

predictive CSGD reverts to climatology as a limiting case when the forecast becomes less skillful 219 

(e.g., at longer lead times) (see related discussion in Scheuerer and Hamill 2015).  220 

The four regression coefficients � , �5, �6, �l are estimated by minimizing the CRPS using the 221 

closed form expression proposed by Scheuerer and Hamill (2015) (see sec. 2.1) as a function of 222 

CSGD parameters over training data.  223 

Past studies (Scheuerer and Hamill 2015; Baran and Nemoda 2016; Zhang et al. 2017; Baran 224 

and Lerch 2018; Taillardat et al. 2019) show that CSGD method and its variants perform well in 225 
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comparison with other modern postprocessing techniques. Recent exploratory analyses (see, 226 

Ghazvinian et al. 2020, Fig. 1) showed that the climatological CSGD shift parameter, derived by 227 

CRPS minimization approach, tends to be inflated and this leads to an underestimation of a 228 

probability of precipitation (PoP).  This bias directly affected the performance of predictive 229 

CSGD, primarily in predicting PoP and, to a degree, the predicted magnitude of precipitation. 230 

This was particularly evident at shorter lead times and in rainy seasons where the predictive 231 

distribution of precipitation deviates widely from climatology. 232 

2.2.2. MMGD 233 

The MMGD (Herr and Krzysztofowicz 2005; Wu et al. 2011) was developed by the U.S. NWS 234 

as a component of the Meteorological Ensemble Forecast Processor (MEFP) of the operational 235 

HEFS (Demargne et al. 2014). This mechanism is routinely used to generate calibrated PQPF 236 

from single-valued precipitation forecasts (ensemble mean) at river basin scales and at temporal 237 

aggregation scales ranging from 6-h to 3-months and for lead times up to 9-months (Wu et al. 238 

2018; Demargne et al. 2014).  In contrast to the CSGD, where PoP and the probability of 239 

magnitude of precipitation are estimated using the same predictive distribution, MMGD uses a 240 

Bayesian approach to break down the predictive distribution to explicitly account for the 241 

dichotomous-continuous nature of precipitation.  242 

Let n and o denote the random variables of a single-valued quantitative precipitation forecast 243 

and the observed precipitation amount, respectively. The conditional distributions of observed 244 

precipitation, given a current forecast of no precipitation and positive precipitation, are given as 245 

follows (details of this derivation can be found in Wu et al. 2011; Ghazvinian et al. 2020):  246 

�p|r�	|�, � = 0� = s�o = 0|n = 0� + s�0 < o ≤ 	|n = 0� 

                                = � + �1 − ��tp�	� 

(9) 
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�p|r�	|�, � > 0� = s�o ≤ 	|n = �, n > 0�                                 
                                = =��� + �1 − =����up|r�	|�� 

(10) 

where � and =��� represent mass probabilities of observed precipitation being equal to zero, and 247 

are combined with the continuous conditional distributions tp�	� =248 

s�o ≤ 	|n = 0, o > 0� �A: up|r�	|�� = s�o ≤ 	|n = �, n > 0, o > 0�  to construct the 249 

predictive distributions.  To estimate up|r�	|��,  its marginal continuous variates 'n|n > 0, o >250 

0+ and 'o|n > 0, o > 0+ undergo normal quantile transformation (NQT), yielding standard 251 

normal variates v = Φ� 'ur���+ and x = Φ� 'up�	�+. Following the meta-Gaussian 252 

distribution theorem of Kelly and Krzysztofowicz (1997),  up|r�	|�� assumes the following 253 

form 254 

up|r�y|z� = Φ {Φ� 'up�	�+ − |Φ� 'ur���+
m1 − |5 } (11) 

where Φ� � and Φ� � �  denote the standard normal CDF and quantile function of standard 255 

normal distribution, respectively; and |  is the Pearson’s product correlation coefficient between 256 

vand x. 257 

The performance of MMGD has been evaluated in a number of studies (see, e.g., Wu et al. 258 

2011; Brown et al. 2014a; Demargne et al. 2014; Kim et al. 2018; Seo et al. 2015; Ghazvinian et 259 

al. 2019). While conclusions indicate that overall, MMGD produces reliable PQPFs and is 260 

capable of preserving the skill in the raw forecast, its PQPFs underestimate heavy-to-extreme 261 

precipitation amounts (low reliability for higher thresholds). The latter finding was also 262 

corroborated by Zhang et al. (2017), where the authors compared the performances of MMGD 263 

and CSGD over the Mid-Atlantic region in U.S. Their results pointed to the superior 264 

performance of CSGD. In that study, CSGD’s ability to ingest additional ensemble statistics as 265 
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predictors was shown to play a key role in its outperformance.  Further performance comparisons 266 

by Ghazvinian et al. (2020), which relied on only the ensemble mean predictor and were 267 

conducted over the American River Basin in California, pointed to the clear outperformance of 268 

MMGD, particularly in predicting PoP. The authors confirmed that the use of a two-part scheme 269 

helped improve the representation of the predictive distribution.   270 

We select MMGD as the second reference model to further address these discrepancies in the 271 

findings of previous studies. This enables us to determine whether our unified ANN-CSGD 272 

model improves upon the operational paradigm (MMGD), especially in situations where CSGD 273 

underperforms the latter, and helps us identify possible factors that contribute to the differential 274 

performance of the three schemes.  275 

2.3. Data and experimental setup 276 

The experiments focus on 24-h mean areal precipitation (MAP) totals over sub-basins of three 277 

major river basins in the service area of the NWS California-Nevada River Forecast Center 278 

(CNRFC; https://www.cnrfc.noaa.gov).  279 

We use ensemble mean precipitation forecasts from January 1985 through December 2016 (32 280 

years) for lead times 1 to 7 days. These data were obtained from the Global Ensemble Forecast 281 

System (GEFS; version 10) reforecast dataset (Hamill et al. 2013) and were processed by the 282 

CNRFC at 1-degree spatial resolution and 6-h accumulation intervals issued daily at 00 universal 283 

time (UTC). As ground truth, we use the basin MAP data generated by the CNRFC. The MAP 284 

data were created using the so-called Mountain Mapper tool, which relies on the Parameter-285 

elevation Regressions on Independent Slopes Model (PRISM; Daly et al. 2008) to group gauges 286 

and interpolate gauge reports onto the domain of each watershed. The CNRFC MAP series are at 287 

6-h increments and are available for the period between October 1948 and September 2017. The 288 
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MAP data were temporally aggregated to 24-h accumulation and paired with coincidental 289 

reforecasts.  290 

Postprocessing experiments are performed over sub-basins in the American River Basin 291 

(NFDC1, FOLC1), the Russian River Basin (WSDC1, GUEC1), and the Eel River Basin 292 

(DOSC1, FTSC1) (Fig. 2), and separately for upper/lower elevation zones when applicable. Sub-293 

basin names and corresponding NWS IDs are presented in Table 1. The CNRFC runs HEFS 294 

routinely to produce postprocessed PQPFs and ensemble streamflow forecasts for many of the 295 

sub-basins. 296 

For each river basin, we selected one headwater and one downstream sub-basin for the hindcast 297 

experiment to examine the potential elevation dependence in forecast skills. The selected basins 298 

have been recognized for their importance in water resources management and flood control, as 299 

noted in past hydrometeorological forecast postprocessing/verification studies (see, e.g., Wu et 300 

al. 2011; Brown et al. 2012; Seo et al. 2015; He et al. 2016; Scheuerer et al. 2017; Ghazvinian et 301 

al. 2020).   302 

The climate of the region is characterized by very dry summers, with most of its annual 303 

precipitation falling during the cool season (October – April), and the highest monthly averaged 304 

precipitation typically recorded in January. The American River originates from the Tahoe and 305 

El Dorado national forests of the Sierra Nevada and is one of the major water supply sources for 306 

California. Streamflow in the American River is mainly (2/3) supplied from wintertime rainfall 307 

and snowmelt runoff, with a small portion (1/3) from spring to early summer snowmelt runoff 308 

(Dettinger et al. 2014).  On the other hand, the Russian, and Eel River Basins are coastal basins 309 

where snowmelt runoff is much less important (Scheuerer et al. 2017). To be consistent with the 310 
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CNRFC operations, we use the nearest neighbor interpolation (Brown et al. 2014a; Seo et al. 311 

2015; Ghazvinian et al. 2020) to pair forecasts-observations. 312 

For generating PQPFs and evaluating the performances of ANN-CSGD relative to the two 313 

benchmark models, we adopt an 8-fold cross validation approach. In this approach, for a given 314 

basin, we divide the data to 8 consecutive 4-year length folds. Predictions for each fold are 315 

produced using each postprocessing mechanism trained with the data of remaining 7 folds (28 316 

years). Postprocessed out of sample forecasts from all models are verified against observations in 317 

individual months of the year in verification years and separately for each sub-basin and forecast 318 

lead time. This leads to 32 years of verified forecasts for each sub-basin and lead time. While the 319 

ANN-CSGD uses the entire available training data (i.e., covering all lead times and seasons) for 320 

training and hyperparameter tuning, the benchmark models are trained using subsamples 321 

representing each forecast lead time and a month/season of the year. To gain insights on how 322 

increasing the length of training record and using different seasonal windows for training can 323 

affect the predictions of benchmark models, we train each model with different training window 324 

sizes and regulations. A summary of training schemes for ANN-CSGD and benchmark models is 325 

provided as follows: 326 

• Unified approach (ANN-CSGD) uses forecast-observation pairs of all months and lead 327 

times of training years for training and hyperparameter tuning, resulting in a training 328 

sample size of up to 7 lead times × 28 years × 365 days = 71540, 20% of which is 329 

dedicated for hyperparameter tuning and not used in training. 330 

• MMGD and CSGD with 61 days and 91 days training windows (MMGD-61, CSGD-61) 331 

and (MMGD-91, CSGD-91) use 61 and 91 training days around the 15th of each month 332 

across training years for generating PQPF for out of sample data of that month, yielding 333 



16 

 

training sample size up to 28 years × 61 days = 1708 and 28 years × 91 days =334 

2548 for each lead time and month, respectively. 61 days and 91 days training windows 335 

have been used in several past studies (e.g., Hamill et al. 2015; Scheuerer and Hamill 336 

2015; Scheuerer et al. 2017; 2018; Wu et al. 2018). 337 

• MMGD seasonal training scheme (MMGD-seasonal), where forecasts in out of sample 338 

data from the cool (October-April) and dry (May-September) seasons are postprocessed 339 

by a model trained using the data in each season. Thus, a single model is trained for 340 

each season and each lead time.  341 

• CSGD seasonal training scheme (CSGD-seasonal) (Scheuerer et al. 2020) where the 342 

climatological CSGD parameters ("ef , #ef and �ef� as well as the climatological mean 343 

forecast &ef  are derived using a 61-day window around the 15th of each month, but the 344 

same regression coefficients are used across cool and dry seasons to increase the 345 

training sample size.  346 

The latter two training schemes yield a sample size of up to 5942 and 4284 for the cool and dry 347 

seasons, respectively. 348 

3. Results 349 

In this section we present verification results using different metrics (see appendix B for 350 

mathematical definitions and details). We first use the continuous ranked probability skill score 351 

(CRPSS) to assess the overall predictive performance of PQPFs from ANN-CSGD relative to 352 

those from the benchmark models with different training scenarios. Subsequently, we analyze 353 

ANN-CSGD’s performance relative to the benchmark models with a 61-day training window, 354 

using Brier skill score (BSS), reliability diagrams, and mean squared error skill score (MSESS).  355 

3.1. Overall predictive performance of PQPFs 356 
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Fig. 3 compares CRPSS of PQPFs from ANN-CSGD and those from the benchmark models 357 

with different training scenarios and for the three river basins. The results are computed using 358 

cross validated-forecasts from all months and are aggregated over sub-basins of each river basin 359 

with MMGD-61 as the reference forecast. To assess whether differences in predictive 360 

performances shown are statistically significant, we perform one-sided Diebold-Mariano test 361 

(Diebold and Mariano 1995) for all possible pairs of model comparisons (see appendix B for 362 

details). These results are provided in tables S1‒S3 in the supplemental material to this article. 363 

Overall, ANN-CSGD generates the most skillful PQPFs across lead times. In the American 364 

River (Fig. 3a), ANN-CSGD outperforms its baseline CSGD with different training scenarios by 365 

a wide margin. The improvement upon each CSGD scheme is statistically significant at all lead 366 

times. Nevertheless, performance differences between ANN-CSGD and each of MMGDs are not 367 

statistically significant. In the Russian River Basin (Fig. 3b), ANN-CSGD significantly 368 

outperforms each of benchmark models in a large number of cases. In the Eel River Basin (Fig. 369 

3c), ANN-CSGD outperforms both MMGDs and CSGDs, though its difference with MMGD-61 370 

is not statistically significant. It is apparent that the relative performance of MMGD and CSGD 371 

varies by river basin and at different lead times. Except for the American River Basin, where 372 

most differences are not statistically significant, the seasonal version of MMGD trails behind 373 

those calibrated with 61- and 91-day moving windows.  374 

For all three river basins, the performance differences of CSGD-61 and CSGD-91 are not 375 

statistically significant across the lead times. Interestingly, unlike MMGD-seasonal, CSGD-376 

seasonal tends to considerably improve its performance at longer lead times and for all river 377 

basins. The training strategy used in CSGD-seasonal was recently introduced by Scheuerer et al. 378 

(2020) in their subseasonal forecast scheme (+ 2 week ahead). This scheme presumes that NWP 379 
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forecast error characteristics change on a season scale when the forecast has very limited skill. 380 

Our result confirms the hypothesis that performance is enhanced through the use of wider 381 

seasonal windows. Expanding the seasonal window potentially reduces the risk of overfitting of 382 

nonlinear CSGD regression model coefficients at longer lead times when the signal to noise ratio 383 

is rather poor.  384 

The results corroborate our postulation that different temporal data pooling methods for training 385 

statistical postprocessing models exert influences on the accuracy of postprocessed PQPFs.  The 386 

use of MMGD as an alternative scheme serves to further illustrate the significance of ANN-387 

CSGD model. EMOS methods such as CSGD are deemed inflexible in that the response variable 388 

in these models is assumed to follow a single unimodal parametric distribution (see, e.g., 389 

Taillardat et al. 2016; Wu et al. 2019; Baran and Lerch 2018), which potentially limits their 390 

performance. As such, why does ANN-CSGD retain its superior performance relative to CSGD 391 

across lead times and study basins while both use the same predictive distribution? This is most 392 

likely due to the fact that ANN-CSGD uses the entire training dataset and encodes nonlinear lead 393 

time- and seasonal-error dependencies in forecasts in an adaptable manner. Thus, it can preserve 394 

the skill of raw forecast, particularly at longer lead times, where postprocessing via CSGD-395 

seasonal offers marginal benefit, or even degrades forecast skill. Another advantage of the 396 

proposed scheme is that it reduces the risk of overfitting due to the early stopping algorithm 397 

implemented as a part of its training. 398 

3.2. Brier skill score and reliability 399 

Fig. 4 shows the results of BSS for three thresholds > 0.25, > 30 and 60 mm/24h and for the 400 

three river basins. While both ANN-CSGD and CSGD underperform MMGD in predicting 401 

events > 0.25 mm (i.e., PoP), ANN-CSGD, interestingly, conspicuously outperforms CSGD 402 
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(Figs. 4a-c). As pointed out by Ghazvinian et al. (2020), CSGD performs poorly in predicting the 403 

PoP due to its reliance on the climatological shift parameter (see also sec. 2.2.1 for further 404 

details). When the forecast is very skillful, the predictive CSGD departs from climatology, so 405 

does the optimal shift parameter. At longer forecast lead times, the forecast skill declines and the 406 

predictive CSGD tends to approach the unconditional climatological one. This feature is 407 

reflected in the improvement in CSGD’s performance across the lead times. ANN-CSGD, on the 408 

other hand, directly estimates the shift parameter of the predictive CSGD as an arbitrary function 409 

of predictors, thus eliminating the need for a climatological shift parameter. This results in large 410 

and statistically significant improvements relative to the CSGD in predicting the PoP.  As for the 411 

outperformance of MMGD relative to the ANN-CSGD, we hypothesize that the flexible two-part 412 

structure of MMGD is likely a major contributor. A detailed discussion on this matter can be 413 

found in Ghazvinian et al. (2020).  414 

   At the middle threshold of 30 mm/day, ANN-CSGD outperforms both schemes in the 415 

American River Basin (Fig. 4d). In the Russian River Basin and the Eel River Basin (Figs. 4e 416 

and f), the relative performance of ANN-CSGD and CSGD is mixed but both manage to 417 

outperform MMGD, except at Day 7 in the Russian River basin where CSGD slightly 418 

underperforms, though it is not statistically significant (not shown here). At the highest 419 

threshold, namely 60 mm/day (Figs 4g-i), ANN-CSGD outperforms all other schemes. CSGD 420 

mostly outperforms MMGD in the Russian River Basin (Fig. 4h) but underperforms the latter in 421 

American River and Eel River basins (Fig. 4g, i). 422 

To compare the calibration of PQPFs produced through each scheme, we plot reliability 423 

diagrams for the same events and evaluate the contribution of reliability and resolution to the 424 

Brier score (Figs. 5,6, and 7).  To attain a large enough sample size to better study larger 425 
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thresholds, we lump cross-validate forecasts at all lead times, and divide forecast probabilities 426 

[0,1] into 15 evenly distributed probability categories to discern the differential performance of 427 

schemes under higher probability categories.  The major findings for each river basin are 428 

summarized as follows: 429 

• American River Basin: In predicting positive precipitation events (> 0.25 mm/day) 430 

(Figs. 5a-c), ANN-CSGD’s outperformance relative to CSGD is attributed to 431 

improvements in both reliability (lower REL) and resolution (higher RES). ANN-432 

CSGD mitigates to a great extent the underforecast issue of CSGD. ANN-CSGD 433 

generates PQPFs that are more reliable than MMGD but are characterized with lower 434 

resolution, yielding an overall inferior predictive performance. At higher thresholds 435 

(Figs. 5d-i), ANN-CSGD clearly outperforms both CSGD and MMGD in terms of both 436 

reliability and resolution. As shown in the histograms embedded in each subplot, ANN-437 

CSGD generates PQPFs that are able to issue high probabilities in predicting mid-to-438 

heavy precipitation with higher frequencies, and this points to improved sharpness 439 

(Figs. 5f and i).  440 

• Russian River Basin: Similar to the American River Basin, at the lowest threshold 441 

(Figs. 6a-c), ANN-CSGD produces forecasts with higher reliability (lower REL) than 442 

MMGD but with lower resolution and overall lower predictive skill (higher BS).  In > 443 

30 mm/day ANN-CSGD performs better than CSGD in terms of both reliability and 444 

resolution (Figs. 6e, f).  At the highest threshold (Figs. 6h, i), the lack of reliability in 445 

ANN-CSGD PQPFs relative to those from CSGD is compensated by the higher 446 

resolution, and this leads to a superior predictive performance of the former as 447 

evidenced by the lower BS. MMGD at both thresholds (Figs. 6d, g) produces less 448 



21 

 

reliable PQPFs with lowest sharpness.  At the 30 mm/day threshold (Fig. 6d), MMGD 449 

PQPFs’ resolution is somewhat higher but is compensated by lower reliability. 450 

• Eel River Basin: At the lowest threshold (> 0.25mm/day) (Figs. 7a-c), the relative 451 

performance of schemes is quite similar to that for the other two river basins, with 452 

ANN-CSGD outperforming MMGD in terms of reliability but not resolution. At higher 453 

thresholds (Figs. 7d-i), PQPFs from ANN-CSGD are more reliable and sharper and, 454 

overall, more skillful (lowest BS). Though at the highest threshold (i.e., > 60 mm/day), 455 

the former exhibit slightly lower resolution than those from MMGD, but this is 456 

compensated by superior reliability. 457 

3.3. Evaluation of deterministic forecasts 458 

Finally, we compute mean squared error skill score (MSESS) to evaluate the performance of 459 

the distribution mean of PQPF produced using each scheme relative to the GEFS ensemble mean 460 

forecast (Fig. 8). These results are accompanied by the results of the Diebold-Mariano test based 461 

on the squared error of mean PQPFs (see Tables S4‒S6 in the supplemental material). The 462 

relative performance varies among the river basins. For the American River Basin (Fig. 8a), all 463 

postprocessed PQPFs outperform the GEFS ensemble mean in terms of MSESS. ANN-CSGD 464 

PQPFs perform favorably against MMGD PQPFs for all three river basins (the performance 465 

differences are not statistically significant). For both the Russian and Eel River Basins (Figs. 8b 466 

and c), MSESS values are generally lower relative to those for the American River Basin.  This, 467 

as we posit, is attributable to location-dependent biases in the GEFS ensemble mean forecast.  468 

For example, GEFS is more skillful in the Russian and Eel River Basins according to the MSESS 469 

results relative to climatological forecasts (the results are shown in Fig. S1 of supplemental 470 

materials). For the Russian River Basin (Fig. 8b), underperformance of postprocessed PQPF 471 
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relative to the GEFS ensemble mean is seen; however, the performance differences are not 472 

statistically significant. Unlike the benchmarks, mean PQPF from ANN-CSGD for Russian 473 

River Basin significantly outperforms GEFS ensemble mean forecast in all lead times. For both 474 

the Russian and Eel River Basins (Figs. 8b, c), ANN-CSGD tends to outperform the other two 475 

schemes, though the performance differentials are not statistically significant when comparing 476 

with MMGD.  477 

 478 

4. Discussion and conclusions  479 

We propose a unified, univariate, hybrid neural network-parametric PQPF postprocessing 480 

scheme capable of producing postprocessed forecasts for lead times at least up to 7 days 481 

(medium-range). This scheme retains the use of parametric predictive distribution, but employs 482 

ANN to estimate distribution parameters from forecast-observation pairs. The predictors 483 

explored in this study include ensemble mean forecast, forecast lead time, and month of the year, 484 

whereas the predictands are three parameters of the predictive censored, shifted gamma 485 

distribution (CSGD).  The ANN-CSGD model parameters were obtained by minimizing a loss 486 

function that is the closed-form expression of CRPS for CSGD (Scheuerer and Hamill 2015), 487 

with the Adam stochastic gradient descent algorithm (Kingma and Ba 2014) as the optimization 488 

approach. To test the performance of our model, we conducted cross-validation experiments to 489 

generate medium-range (lead times 1‒7 days) daily accumulated PQPFs over selected river 490 

basins in the service area of the CNRFC. We used two benchmarking processing schemes in this 491 

study, namely the CSGD EMOS (Scheuerer and Hamill 2015) with a single-predictor 492 

formulation and the NWS operational postprocessor mixed-type Meta-Gaussian distribution 493 

(MMGD). These benchmark models were calibrated based on different seasonal data pooling 494 
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scenarios to investigate the possible impacts of training window size and strategies on the 495 

performance of postprocessed PQPFs. 496 

Verification results showed that ANN-CSGD, in general, outperform the baseline CSGD and 497 

MMGD in terms of overall calibration, and significantly so in some cases. Interestingly, ANN-498 

CSGD mainly impacts (improves) BSS of PQPF from CSGD at the lowest threshold, which has 499 

disproportionate impacts on CRPSS. ANN-CSGD manages to address the CSGD’s poor 500 

performance in predicting PoP as noted in Ghazvinian et al. (2020). While the ANN-CSGD 501 

performance comparison results are mixed in predicting 30 mm/day thresholds, it outperforms 502 

both benchmark models in predicting large-extreme events (> 60mm/day). On average, the 503 

proposed method generates high probability forecasts for heavy precipitation more frequently 504 

than benchmarks as assessed by sharpness histograms (higher sharpness). This is particularly 505 

useful to CNRFC’s operational precipitation and flood forecasting practice and, thus, could 506 

benefit real-time reservoir operations (e.g., determining reservoir release schedules) in 507 

California. In its current practice, CNRFC relies on HEFS to produce ensemble PQPFs from 508 

NWP precipitation forecasts and then generates ensemble streamflow forecasts, which are used 509 

to guide real-time flood management and control practices. The MMGD model, embedded in 510 

HEFS, has shown to systematically underestimate heavy precipitation amounts, leading to 511 

negative biases in subsequent flood forecasts (Demargne et al. 2014; Brown et al. 2014b). The 512 

superior performance of the proposed ANN-CSGD on heavy precipitation estimation makes it a 513 

viable tool to address limitations in the forecast skills for extreme precipitation and floods. These 514 

improvements in forecasts will, in turn, serve to aid real-time reservoir operations and flood risk 515 

management.   516 
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In contrast to the CSGD version of Scheuerer and Hamill (2015), the proposed method directly 517 

estimates predictive CSGD’s shift parameter given each set of predictors. In doing so, it 518 

circumvents the need of invoking climatology, and thereby alleviates the bias issue in estimating 519 

the PoP in the existing CSGD scheme. Furthermore, the use of ANN allows for representations 520 

of complex interactions between three predictive CSGD parameters. Together, these new 521 

features help the scheme produce sharper (narrower) predictive distributions than the benchmark 522 

CSGD.  Moreover, ANN-CSGD is able to use much larger training data with extra high forecast-523 

observation values, and efficiently translate this to predictive skill at the highest threshold.  524 

The new scheme also has a distinct practical advantage in that it eliminates the need for more 525 

computationally expensive and operationally labor-intensive approach used in most 526 

contemporary statistical postprocessing schemes. Whereas the benchmark models need to be re-527 

trained for every forecasting lead time and month/season, ANN-CSGD does not, and it can 528 

simultaneously utilize forecast-observation pairs across all lead times, months, and seasons. Our 529 

results support our hypothesis that the fixed size seasonal window training schemes for current 530 

postprocessing methods may not be sufficient for generating consistently skillful PQPFs across 531 

all lead times. In other words, the performance of existing schemes may be improved by 532 

identifying an optimal seasonal training window specific for each lead time, depending on the 533 

study area and the statistical model at hand. For example, it was shown that a seasonal CSGD 534 

tended to improve the performance benchmark 61-day and 91-day CSGDs at longer lead times 535 

but not in shorter lead times. ANN-CSGD, on the other hand, automatically adapts to the 536 

changes in raw forecasts-observations errors along with all lead times and seasons, and hence, is 537 

capable of producing PQPFs with consistently higher skills. 538 
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A major limitation of nonhomogeneous regression or GAMLSS techniques is that their 539 

performance is dependent on the robustness of user-prescribed regression relationships.  540 

Moreover, they are typically limited in digesting ordinal temporal covariates such as those used 541 

in the ANN-CSGD model.  The proposed model, by contrast, can freely learn to characterize 542 

arbitrary nonlinear predictor-distribution parameters relationships and among-predictors 543 

interactions efficiently.  544 

A well-known challenge in training ANN models is model configuration (hyperparameter 545 

tuning) to achieve the best validation score. Generally, it is very difficult to find the best possible 546 

ANN configuration in a very large parameter space. As pointed out by Scher (2018), there is a 547 

trade-off between robustness, which depends on the depth and thoroughness of grid search, and 548 

computational expenses. For example, our initial assessment showed that maintaining the 549 

architecture but expanding the number of layers does not significantly improve the model 550 

performance. Other regularization techniques such as L1 could be used in combination with early 551 

stopping to further reduce generalization errors. However, these techniques could require deeper 552 

search for hyperparameters and, therefore, increase computational complexity. We also 553 

experimented with training embedding layers with different sizes ]2,3,4,5,6,7_ to project discrete 554 

lead times onto a larger vector of inputs but only found very marginal improvements in the 555 

validation score. Therefore, we decided not to include embedding layers in our final model.  556 

In future work, we aim to extend the current approach to create a spatially adaptable scheme for 557 

postprocessing medium-range ensemble precipitation forecasts on a gridded basis. We expect to 558 

achieve this by incorporating geographical information into the network as shown by Scheuerer 559 

et al. (2020) in their subseasonal forecasting approach. For example, entire ensemble members or 560 

their statistics at a grid point, in addition to those from a specific radius of surrounding grid 561 
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points, can be direct inputs to the model as the predictors. Such a model potentially eliminates 562 

the need for generating a local superensemble to address the issue of displacement errors in 563 

gridded precipitation forecasts.  564 

Additionally, the current study focuses on 24-hour accumulated precipitation. In operations, 565 

CNRFC produces 6-hourly PQPFs and updates their forecasts every 6 hours during major storm 566 

events. To align with CNRFC operations, we also plan to explore the performance of the 567 

proposed ANN-CSGD in generating 6-hourly PQPFs in our future work. Finally, stacked 568 

convolution or Long Short-Term Memory (LSTM) layers applied on top of embedding vectors, 569 

appear to be very effective in object detection (Krizhevsky et al. 2012), in computer vision, and 570 

in Natural Language Processing (Collobert et al. 2011), including Machine Translation and 571 

Question Answering (Devlin et al. 2018).  We envision investigating similar techniques to 572 

possibly improve the skill of postprocessed forecast at longer lead times. 573 
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Implementation details 584 
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We implemented our ANN codes in python (Python Software Foundation 2018) using 585 

Google’s deep learning platform, Tensorflow (Abadi et al. 2016) and Keras API (Chollet et al. 586 

2015). For fitting CSGD climatological and predictive distributions, R (R Core Team 2018) 587 

scripts provided by Dr. Michael Scheuerer were used. To calibrate NWS postprocessor, mixed-588 

type meta-Gaussian distribution (MMGD), a research version, very similar to the operational one 589 

was implemented in R.  590 

Appendix B 591 

Verification metrics used in this study 592 

A. Mean squared error skill score (MSESS) 593 

The mean squared error skill score (MSESS; Jolliffe and Stephenson 2003) measures the 594 

reduction in mean squared error (MSE) of deterministic forecast (mean PQPF/ensemble mean) 595 

and verifying observations relative to the reference forecast. 596 

����� = 1 − 1A H��̅- − 	-�5
�

-P 
1A H��̅-��� − 	-�5

�

-P 
�  

(A1) 

Positive values of MSESS indicates improvement in skill of deterministic forecast relative to the 597 

reference forecast. 598 

B. Brier skill score (BSS) 599 

The Brier score (BS; Brier 1950) is equivalent to mean squared error of probabilistic forecast 600 

exceeding a given threshold over A pairs of forecast and observations 601 

R���� = 1A H'�-��� − �]	- ≥ �_+5
�

-P 
 (A2) 

where �-��� is the probability of probabilistic forecast exceeding the threshold value � , and I(.) 602 

is the indicator (step) function that takes the value 1 if the 8th verifying observation exceeds the 603 
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threshold value and 0 otherwise. BS is negatively oriented and ranges from zero to one. To 604 

assess the improvement in BS relative a reference forecast, we compute Brier skill score 605 

R�� = 1 − R� R����⁄  (A3) 

Positive values of BSS indicate improvement of BS over that of reference forecast. Brier score 606 

can be decomposed to three terms: reliability or Type-I conditional bias, resolution, and 607 

uncertainty (Murphy 1973; Wilks 2011)  608 

R���� = �9g8��8g84	��� − �92>g�48>A��� + vA=934�8A84	��� 

             = 1A H G-'�-��� − >̅-���+5 − 
�

-P 
1A H G-'>̅-��� − >̅���+5

�

-P 
 

            + >̅���'1 − >̅���+ 

 (A4) 

where � indicated the number of categories, forecast are aggregated to, G is the number of cases 609 

in each category, >̅-��� is the average climatological probability (ACP) exceeding the threshold � 610 

in that category and >̅��� is the overall ACP. It should be noted that uncertainty term as seen is 611 

independent of the forecast source. Probabilistic forecasts with lower/higher reliability/resolution 612 

values are desirable. 613 

C. Continuous ranked probability score (CRPS) 614 

The continuous ranked probability score (CRPS; Matheson and Winkler 1976) measures the 615 

integral of squared differences between the cumulative distribution function (CDF) of 616 

probabilistic forecast and verifying observation. It is a popular metric to assess the overall 617 

predictive performance of probabilistic forecasts (sharpness and reliability; see Gneiting et al. 618 

2007 for further details). CRPS averaged over the sample of forecast-observations with size of A 619 

is given by 620 
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�∞
�
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  (A5) 

where �-  denotes the CDF of PQPF at the ith forecast instance and 	-is the verifying 621 

observation. I (.) is the indicator (step) function which takes the value of 1 if  � ≥ 	-   and 0 622 

elsewhere. Continuous ranked probability skill score (CRPSS) is routinely used to assess the 623 

performance of probabilistic forecast relative to a reference forecast 624 

��s�� = 1 − ��s� ��s����⁄  (A6) 

D. Reliability diagrams and sharpness histograms 625 

The reliability and resolution of a probabilistic forecast for exceeding some specific thresholds 626 

(�� can be assessed graphically using reliability diagrams. The reliability diagram consists of a 627 

plot of the average values of forecast probabilities exceeding �, against that of observed relative 628 

frequencies over each defined probability category. In a reliable probabilistic forecast, the 629 

reliability diagram should be a close 1:1line. Interested readers are referred to Brocker and Smith 630 

(2007) and Wilks (2011) for details on how to interpret the deficiencies in probabilistic forecasts 631 

using reliability diagrams. To assess the sharpness of PQPF for specific thresholds, we use 632 

sharpness histograms to investigate the frequency of forecast probabilities for different 633 

probability bins. Note, a sharp forecast is characterized by higher frequencies for the forecast 634 

probabilities close to either 0 or 1. 635 

E. The Diebold-Mariano test  636 

To assess statistical significance of verification score differences between two forecast 637 

methods, we use the Diebold-Mariano statistical test of the null hypothesis of equal predictive 638 

performance (Diebold and Mariano 1995). Let  ∆ = �� − ��5 denote the vector of verification 639 
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score S differences from two competing forecast methods �  and �5 over verification sample 640 

with length n, ∆ � = 1 A⁄ ∑ ∆-�-P , and #�� a suitable estimator of asymptotic standard deviation of 641 

�. Under standard regularity conditions, the test statistic 4� = √A �
��∆ asymptotically follows a 642 

standard Gaussian distribution under the null hypothesis of no difference in predictive 643 

performances of two competing forecast methods. Following the past studies (Baran and Lerch 644 

2016, 2018; Rasp and Lerch 2018)  #�� can be estimated by square root of sample autocovariance 645 

up to lag � − 1 for the k step-ahead forecasts to account for temporal dependencies in forecast 646 

errors. We use one-sided Diebold-Mariano tests. The alternative hypothesis is that forecast 647 

method �5 underperforms forecast method �  and the statistical significancy of the test’s statistic 648 

can be assessed by obtaining corresponding p-value. we perform the tests based on both CRPS 649 

and squared error of mean PQPF (on a limited basis) and for each lead time and separately for 650 

each river basin. To address spatial dependence of forecast errors, scores are averaged across 651 

sub-basins in each river basins (M. Scheuerer 2021, personal communication). Further, we adjust 652 

the test results by accounting for test multiplicity (i.e., simultaneously analyzing test results of 653 

multiple lead times) using false discovery rate (FDR) method (Benjamini and Hochberg 1995) 654 

by controlling the FDR at the level %���= 0.05. Note that, this procedure was discussed by Wilks 655 

(2016) in spatial context where test results are interpreted simultaneously across multiple grid 656 

points but also was suggested to be applied whenever the results of simultaneous several 657 

hypothesis tests are reported or interpreted. 658 
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Fig. 1.  Schematic of the ANN-CSGD structure. We illustrate hidden layer with 5 nodes for the 

sake of demonstration. Three parameters of predictive CSGDs are considered as additional 

functions of ANN outputs to constrain the values of these parameters to reasonable ranges. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

Fig. 2. Location map of the study basins as well as basins in the service area of CNRFC within 

the State of California. 

 

 

 

 

 

 

 

 

 

 

 



 

 

Fig. 3. CRPSS for ANN-CSGD and benchmark postprocessing models with different training 

scenarios (61-day, 91-day, and seasonal window). Displayed are cross-validated CRPSS computed 

by pooling CRPS values across study sub-basins in each river basins and all months as a function 

of lead time. MMGD PQPFs with 61-day training window serve as the reference. 
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Fig. 4. Brier skill score (BSS) results for PQPFs from ANN-CSGD and CSGD and for three 

different thresholds: > 0.25, 30 and 60 mm, averaged over study sub-basins in each river basin and 

shown as a function of lead time, with MMGD-61 as the reference.  
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Reliability diagrams, American River Basin, Lead time: 1‒7 days 

Fig. 5. Reliability diagrams for the three thresholds (> 0.25, 30 and 60 mm) and for sub-basins in 

the American River Basin were computed based on observations and cross-validated 

postprocessed forecasts pooled across study sub-basins and all forecast lead times. Brier score 

(BS), Reliability (REL) and Resolution (RES) values are shown in each panel. The insert 

histograms show the frequencies for each of 15 forecast probability bins in log10 scale for better 

visibility and the bars show 90% bootstrap confidence intervals of observed frequencies for 

estimated forecast probabilities. Benchmark models are trained using 61-day window centered 

around the 15th of each month. 
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Reliability diagrams, Russian River Basin, Lead time: 1‒7 days 

Fig. 6. As in Fig. 5 except for the Russian River Basin. 
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Reliability diagrams, Eel River Basin, Lead time: 1‒7 days 

Fig. 7. As in Fig. 5 except for the Eel River Basin. 
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Fig. 8. As in Fig. 3 except for MSESS with benchmark models trained using 61-day window. 

GEFS ensemble mean forecast is considered as the reference. 

 

(a) (c) (b) 



 sub-basin ID sub-basin name 

American River Basin   

 NFDC1HUF North Fork American River-North Fork Dam (upper) 

 NFDC1HLF North Fork American River-North Fork Dam (lower) 

 FOLC1LOF American River-Folsom Lake 

Russian River Basin   

 WSDC1HOF Dry Creek - Lake Sonoma 

 GUEC1LOF Russian River - Guerneville 

Eel River Basin   

 DOSC1HUF Middle Fork Eel River-Dos Rios (upper) 

DOSC1HLF Middle Fork Eel River-Dos Rios (lower) 

FTSC1LUF Eel River-Fort Seward (upper) 

 FTSC1LLF Eel River-Fort Seward (lower) 

Table 1. Names and NWS IDs of study sub-basins of each river basin. 

 




